
Fermi National Accelerator Laboratory

High Performance Parallel Local Memory
Computing at Fermilab

T. Nash
Computing Division

Fermi National Accelerator Laboratory
P.O. Box 600, Batavia, Illinois 60510

January 1992

Published in the Proceedings of WHP92 on Heterogeneous Processing, Beverly Hills, California,
March 23,1992.

$operafedbyU. nmrsiks Research Assoktion Inc. urder Cmtrad No. DE-AC02-76CH03000 wih !he United States Capament of Energy

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof nor any of
their employees, makes any warmnty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its ase would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufmturer. or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any
agency thereof The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof.

High Performance Parallel Local Memory Computing at Fermilab

Presented by Thomas Nash*

Computing Division
Fermi National Accelerator Laboratory, Batavia IL 60510

Introduction

Both experimental and theoretical approaches to high
energy physics (HEP) at Fermilab are computer
technology limited: no one can identify a requirement on
computing or dam capacity that is independent of cost or
other realities. Fermilab has been forced, therefore, to
turn significant attention and resources to finding
extremely cost effective solutions to its computing using
whatever technology is available, and in the process has
become a pioneer in goal-driven computer science,
integrating commercial solutions at the chip, board, and
system level

The most effective HEP computing solutions are
general purpose parallel systems which take advantage
of the scientist’s ability and willingness to identify
explicitly the structure of the problem. Science, almost
by definition, deals with regular problems which
intrinsically oft& parallel solution. It is straightforward
to recognize that a lattice problem maps obviously to a
grid of processors. Similarly, it is almost intuitive to
recognize that the independent events resulting from the
collision of particles in a HEP experiment can be dealt,
one at a time, to the individual nodes of an event
oriented parallel farm of computers. This explicit
parallelism is the disting-uishing feature of the advances
in computing developed in the HEP context. In recent
years, most obviously first in the hypercube movement,
and now in the surge of interest in networked parallel
workstation “clusters”, explicit parallelism has become a
recognized force in the computer science attack on the
problems of parallel computing.

Early work on parallel processing led directly to the
two main explicitly parallel, local memory computing
directions that dominate Fermilab’s high performance
computing today: farms of RISC technology
workstations for experiment triggering and
reconstruction, and the ACPMAPS massively parallel
computer that supports theoretical calculations.
Likewise, early efforts in software tools which allow the
scientist to focus on the problem not the architecture

* This report aummarizcer the efforts of many individuals in the
Computing lhvision at Fermitab. Thanks 10 E. Schemcchom, M.
Fausey. M. Fischler. R. Pordes. S. Woken. for preparing this report

have evolved into the modern packages CPS and
Canopy which, respectively, are used in the contexts of
networked farm systems and closely coupled massively
parallel systems.

RISC processor farms and CPS

Today there are over 400 nodes in farms at Fermilab.
A fxm is a collection of loosely coupled processors that
we managed as a single system. The most recent
Fermilab farms used in expcrimcnt event reconstruction
consist of two commercial species of RISC workstation
processor nodes: Silicon Graphics, Inc. (SGI) and IBM
RS/6000.

The processor farms

The processors in a farm are connected over a
communications network so they are able to exchange
data, That can be VME, Ethernet, or whatever is
practical. Most activity is now via TCP/IP. This allows
all the computers to share data from a single set of tape
and disk drives. The sharing of these peripheral devices
and the fact that a farm works collectively on a single
problem at a time distinguishes farms from mere
collections of workstations.

Each farm is composed of approximately 100
processors, serving as worker nodes, tape sewer nodes,
and as NFS server nodes. Each mns its vended version
of a UNIX operating system, The CPUs are rack
mounted in tiers and each has at least 12 MB memory,
160 MB disk and Ethernet capability. See Table for
other information. The farms are configured into
“farmlets” of approximately 12 - 25 processors, and lhis
subunit is on one Ethernet segment, separated by an
Ethernet bridge or router. Each “farmlet” contains an
NFS server, a tape server, and the balance are used as
worker nodes. Local disk on each node has a copy of
the operating system and paging space. The worker
nodes all remote mount the Fermilab local executables
from their “farmlet” NFS server, as well as scratch space
areas for the batch jobs. Communication outside of the
“fsrmlet” is generally limited to user logins and con-
nections to the CPS Job Manager, which oversees the
job.

Farms at Fermilab

IBM RS/6000 SGI, hx

Worker nodes
63 Model 320s 22 Model 4D25s
36 Model 320Hs 78 Model 4D35s

Setver nodes
3 Model 530 3 Model 4D25s
2 Model 320s 3 Model 4D310s

Operating System
AM 3.1.5 IRIX 3.3.2

IRIX 3.3.3

The software support

The solware environment is layered. This approach
utilizes the features of the UNIX operating system, and
each farm implements its own vendor’s version of
UNIX, Lying above that is the communications and
networking layer. This contains TCP/IP and NFS at a
minimum. Topmost is special software which has been
written at Fermilab tc make it possible for scientists to
use a farm effectively in a manner similar to that of a
single large computer. Called “Cooperative Processes
Software” (CPS), this software runs on a variety of
computer platforms, and is designed to accommodate
heterogeneous farms made up of different types of
computers.

CPS is a tools package which eases splitting a job
across a set of processes. The processes may be
distributed over a set of computers. From the standpoint
of hardware the CPS environment is a set of networked
UNIX workstations. However, this is not the way the
scientist sees the CPS environment; the process oriented
apphcations software environment the user encounters is
a fully-connected group of processes, each having equal
access to each other and peripheral devices. CPS
supports general process interactions including:

data transfers; send data to another process, and
get data from another process.

remote subroutine calls; a process calls a
subroutine on another process.

process queues and synchronization mechanisms;
determine process availability for data or
remote call, and coordination of transfers
and calls.

An attractive feature of CPS for many is that it can be
used with or without explicit message passing. While
message passing can be specified for interprocess
communication, CPS organizes process execution by
queuing and dequeuing from, for example, READY and
DONE queues. The user may define his own set of
queues. Message passing underlies this scheme, as well

as the CPS subroutine calls, but it remains hidden from
the user unless it is explicitly used.

ImporIani CPS subroutines

data transfers
acp-declare-block

declare array as possible source/destination of
data transfer

acp-send
send data to a block in another process

=cp-w
get data from a block in another process

synchronlzatlon and queues
acp-declare-queue

declare process eligible for a particular queue
acp-q”e”egrccess

place a process ID on a queue
acp-dequeue>rccass

remwe a process ID from a queue
acp-wait-queue

wait for a queue tc become full or empty
=cp-SY “C

wait for set of processes to all arrive at synch
point

remote subrouilne calls
acp_declare-subroutine

declare subroutine eligible to call from another
PPXeSS

acp-service-calls
declare process to be a dedicated remote server

acp-call
call a subroutine in another process

Program development with CPS begins by
incorporating CPS subroutines into the application code
using the tool kit of explicit parallelism directives One
then compiles the program on target computer(s) and
links the program on the target computer(s) with the
CPS system library. Applications debugging is
simplified because jobs operate identically under CPS
on single or multiple computers. The job manager start
the set of processes running, manages the interacrions
between the processes, and shuts down the processes at
the end of the job.

CPS has a batch facility that supports production
jobs. Users submit CPS jobs to UNIX batch queues, one
queue for each processor Cam or production system,
depending on how the complex is configured. The next
job on the queue is started when a farm becomes free.
The various phases in the Batch sequence - ondeck:
copy; execution; and, ccpyback - are pipelined, allowing
multiple jobs to be handled. CPS batch supports
computer center operations with an operator console that
displays tape mount requests and job status information.

To date, the CPS software system has been ported to
a large number of hardware platforms. Current imple-
mentations at FNAL assume all proxsses from a job are
executing on the same computer platform, running
identical environments. However, the CPS primitives

were originally designed to be platform independent,
and thus offer the opportunity to manage distributed
heterogeneous parallel processing. The current
implementation of CPS (V2.5) can handle
heterogeneous farms as has been demonstrated at a sister
laboratory at another site.

We are planning a project to integrate CPS with a
second Fermilab software system, UNIX Product Support
(UPS) to provide a consistent automatically uniform
environment across the varied platforms of heterogeneous
networked system.

Creating consistent environments

As it exists now, UPS manages software packages
across a set of different computer platforms, but has no
functionality for job execution. Its appeal is that it
simplifies and organizes the task of using a variety of
computing platforms to work on the same application. It
handles the housekeeping associated with developing and
using applications, especially over long periods of time, in
multiple computing environments.

UPS utilities provide uniform mechanisms for defining
the versions of software to be used; user access to the
required environmental variables and other parameters
needed in order to use the software: distribution of
selected software to remote computers: generation of the
final application (files such as executables, data tiles etc -
associated with rhe job to be run); provision of a platform
independent process operating environment; census of the
software installed on remote computers: archival and
retrieval of old versions of software; etc.

The UPS kernel supports multiple simple databases of
lists of software programs with associated attributes of
version, platform type, proprietary nature, and dependency
of the software on other software packages. A single UPS
data base can be used by multiple, different computers, or
multiple data bases can be used on a single computer. UPS
provides utilities for handling the information contained in
these databases, and for managing the software so
described.

The extensions to CPS/UPS we plan would provide
the framework to support the development, building, and
execution of a multiprocess application where the
functions to be performed are distributed among several
different platforms of UNIX computers (IBM RS/6000,
SGI, DEC5000 and Sparcstation 11s) and specified
portions of the data to be processed are transferred
between the processes.

To support execution of the processes as a single job,
the system must provide for distribution of the correct
versions of the requisite files to the various computers; for
the transparent transfer of data between platforms that
may have different dataword byte ordering or floating
point representations; for the coordinated startup,
monitoring and stopping of the processes in a uniform
manner across the different computer platforms; and for a
uniform and centralized mechanism for the reporting of

results at the application level. All the interprocess
communication, synchronization, management and data
transfer mechanisms must be computer hardware and
software independent.

For example, in the domain of HEP, the system we
propose would allow experiment event data to bc read
fmm I/O media on a Silicon Graphics, the core of the data
processed on an IBM RSICtiOO. and the results of the
physics analysis visualized on a Decstation 5000. To
achieve this requires a system that allows the application
developer to specify what source files are to be compiled
and linked on which platform; what dependencies these
compilations and links have on each other; and what data
and configuration fdes are needed on which platform. The
system will provide for the requisite files and their
updated versions to be available on the specified computer
at the appropriate time. It will maintain a history of the
application generation for later checking as needed by the
application user or maintainer.

ACPMAPS:
Massively parallel computer and Canopy

Fermilab efforts to support theoretical computations in
HEP led to the development of a massively parallel local
memory computer that is ideally suited for the lattice
gauge calculations of quantum chrcmodynamics, QCD,
one of the biggest consumers of computer cycles
nationwide. This highly parallel, cost effective computer
is called the Advanced Computer Program Multi-Array
Processor System, or ACPMAPS.

ACPMAPS is a multiprocessor computer with
hundreds of individual processor modules that can work in
parallel on a single problem. It uses an innovative scheme
for communication between its constituent processors.
The connectivity can be thought of as similar to a modem
telephone switching network, but at much higher speeds.
Each processor module resides in one of the sixteen slot;
of a Bus Switch Backplane (BSB) crossbar switch crate
which takes on a role analogous to a local t&phone
exchange. The BSB allows a processor in one BSB slot to
make a point-to-point connection with a processor in any
other BSB slot Once a connection has been established,
the processor that initiated the connection can read and
write the memory of the other processor at a rate of 20
megabytes per second. The time to establish a connection
is only a few micro-seconds.

Up to eight pairs of processors may communicate
simultaneously, thus providing an aggregate
communication of 160 megabytes per second within the
crate. An additional module, the Bus Switch Intcrfacc
Board (BSIB), provides a mechanism for communicating
between BSBs. A BSlB in one crate can be connected via
twisted-pair cables to a BSIB in another crate. This
provides a 20 megabyte per second link between the two
BSB slots like a long distance call. The ACPMAPS
computer makes extensive use of BSIB modules-
approximately one half of all BSB slots are filled with

BSIBs. This patented switch hardware allows systems to
be interconnected in a large variety of ways with specific
configurations optimized for the type of calculation to be
performed. In the Fermilab installation. targeted at lattice
gauge. the system is set up as 4 fully connected 3 x 3
planes of crossbar crates.

ACPMAPS also contains a highly parallel I/O
subsystem. Approximately one half of the BSBs have one
of their slots connected to a VME backplane in the same
physical crate which in turn provides a connection to a
SCSI bus. Each SCSI bus contains two 676 megabyte disk
drives and two Exabyte 8mm tape drives (up to two
gigabytes of storage per tape).

ACPMAPS upgrade

A new ACPMAPS processor module containing hvo
40 MHz Intel 860 microprocessors.per board, has been
designed and built to upgrade the ACPMAPS processing
power. This processor is compatible with the same
BSB/BSIB communications mechanism. The original
processing modules are being removed and replaced by
the new modules. The commitment not to interrupt
ongoing production physics dictates a cautious pace for
this replacement process. Existing physics applications
programs (that had already been written for ACPMAPS)
run on the new modules with no changes. The underlying
C software required only minor adaptations for the new
processor, and a library of optimized computational
kernels is being ported to the i860 chip architecture.
These software changes represent a moderate systems
effort, and are invisible to the ACPMAPS user
community. The upgraded ACPMAPS will have ten
times the computing power of the original ACPMAPS-
the ability to perform at a peak rate of 50 GFLOPS.

Summary of upgrade

Existing ACPMAPS Upgraded ACPMAPS

Aggregate Performance

5 GFLOPS (peak) 50 GFLOPS (peak)
2,500 Mbytes memory 20,000 Mbytes memory
22,CNl Mbytes disk space 22,CCO Mbytes disk space
64,000 Mbytes of tape 64,ooO Mbytes of tape

drive capacity drive capacity

consiituent Parts

256 processors 306 processors
(Weitek XL.8032) (two i86Os each)
36 BSB crates 36 BSB crates
271 BSIBs 271 BSIBs
32 disk drives 32 disk drives
32 tape drives 32 tape. drives

Canopy

A powerful software environment is an important and
innovative part of the ACPMAPS system: it is called
Canopy. Canopy is designed to support computing for grid
oriented problems that map onto a lattice, defined
generally as a set of sites, each of which has defined
directions to a set of neighboring sites.

For example, a three dimensional grid is a lattice where
the set of sites is the set of all points where the grid lines
cross. The calculations performed by Fermilab and
collaborating physicists make use of a four-dimensional
space-time lattice to perform QCD calculations of the
strong force. When running lattice gauge software under
Canopy, ACPMAPS typically performs at the high level
of about 30% of its peak GFLOPS rating. User
programming is in C. with certain Canopy kernels and
common computational kernels in assembler. The level of
abstraction in Canopy remains high. The scientist uses
subroutines to create a grid with known connectivity and
to manipulate the fields that are situated on these grids.
Then, by writing task routines to do operations on a site,
the parallelism is automatically invoked. The user need
not be aware of the specific machine details such as the
number of nodes it has OT how the sites are distributed
among the nodes.

Summary

Motivated by an ongoing need to have cost effcctivc
computing, Fermilab has made some important conui-
butions to distributed memory parallel computing in both
hardware and software. By adopting the philosophy of
incorporating technology at the highest commercially
available level, these products will become even more
robust.

